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the largely temperate Caniformia with the more geo-
graphically restricted and tropical Feliformia clade
generates an overall strongly positive aggregate CRR
slope, although all but one nested subclade demonstrate
shallower CRR slopes, and the aggregate slope for
Caniformia is negative. Because these sister clades have
similar species richness, variation in diversification rates
(scenario D) cannot explain the aggregate slope; rather,
we suggest PNC with escape (scenario C) in the
Caniformia clade best explains the observed CRR for
Carnivora.

(c) Bats
Our analysis illustrates the importance of bats (which
account for approximately a quarter of all mammal
species) in shaping the global richness gradient
(figure 5). The global temperature–richness slope for all
species excluding bats is shallow (slope þ CI ¼ 0.07 þ
0.003, p , 10215, r2 ¼ 0.15) and the CRR slope for
non-bat clades never exceeds 0.1. The equivalent gradient
for bats is more than four times as steep at 0.32 (p ,
10215, r2 ¼ 0.32), and the aggregate richness gradient
for all terrestrial mammals is 0.18 (slope þ CI ¼ 0.18 þ
0.01, p , 10215, r2 ¼ 0.21). Bats represent a highly suc-
cessful radiation, providing some support for faster
diversification (scenario D), although, depending upon
tree resolution, diversification rates for the clade might
not be unusual (Helgen 2003). We also find significant
tropical conservatism for bats (K ¼ 0.17, p , 0.001; l ¼
0.07, p , 10215), consistent with their strong influence
on the overall gradient (scenario C). The bat richness

gradients contrast with those of the other major mamma-
lian group—the predominantly temperate and widespread
Rodentia (Kemp 2005), representing 44 per cent of
mammals. Rodents have many nodes with near-zero
slopes, as well as several nodes with the most negative
slopes of any mammalian clade (figure S2 in the electronic
supplementary material). Our examination of the AET–
richness relationship confirms that the global CRR
emerges from aggregating clades with disparate slopes
and is largely driven by the New World bat clades, which
demonstrate strongly positive slopes (figure S3 in the elec-
tronic supplementary material), strong niche conservatism
and perhaps rapid diversification.

4. DISCUSSION
We show that the relationship between climate and
species richness varies considerably between clades,
regions and time periods. A large body of work has
sought to derive mechanistic links between climate and
richness from the correlations between species richness
and various environmental variables (Willig et al. 2003).
Differences in CRRs between regions and between taxa
have been interpreted as reflecting differences in ecologi-
cal mechanisms driving richness patterns (reviewed in
Hawkins et al. 2003). We suggest that, in contrast to
more traditional explanations, this variability is expected
under a scenario in which environmental niches are
evolutionarily conserved and clades differ in their
geographical and climatic origins. In addition, our ana-
lyses support contentions that global climate–richness
gradients can emerge in the absence of gradients in
diversification or environmental carrying capacity (see
Wiens & Donoghue 2004). While our findings do not
preclude a causal link between climate and richness,
they suggest that the evolutionary origins and lability of
clades should be considered when interpreting correlative
patterns.

Gradients in energy or evolutionary rates are predicted
to produce positive slopes across clades via their effect on
environmental carrying capacity or diversification. How-
ever, we find that many clades show negative slopes (i.e.
higher richness in cooler climates). In addition, we show
that broad environmental tolerances of clades were deter-
mined early in the radiation of mammals (greater than
80 Ma). The Eocene warming may have increased the
proportion of new clades with tropical origins because
of the expansion of the tropical biome, enhancing the
overall trend for positive CRRs globally. With tempera-
tures cooling following the Eocene thermal maximum
(approx. 50 Ma), we start to see an increasing frequency
of clades with negative temperature–richness slopes.
Within more recent time periods (less than 40 Ma),
clade richness gradients differ little from null expec-
tations, perhaps reflecting the geographical radiation of
species within the broad environmental niches defined
by their higher clade membership.

Positive slopes can emerge from the aggregation of
nested clades with disparate slopes. Aggregate slopes
will be influenced by variation in species richness
between daughter clades and in the environments they
occupy, as well as strength of PNC. Nonetheless,
steep slopes were observed across clades varying in
both species richness and environmental range limits.

(a)

(b)

(c)

1 27 42 60 118 258

Figure 5. Species richness maps for (a) all the species, (b)
bats only and (c) all species other than bats, showing how
bats influence the overall latitudinal diversity gradient. Data
are depicted as 20 quantiles based on the data for all mam-
mals with warm colours indicating higher richness.
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I DEA AND
PERSPECT IVE Phylogenetic niche conservatism, phylogenetic signal

and the relationship between phylogenetic
relatedness and ecological similarity among species
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COMMENTARY ON LOSOS ( 2 008 ) : N I CHE
CONSERVAT I SM D É J À VU

There is much debate in the recent literature over whether
niches are generally conserved or not. I have argued that this
debate is not very fruitful, because niches are presumably
neither identical nor completely different between close
relatives, and the answer simply depends on the scale and
details of the test (Wiens & Graham 2005). Instead, a more
useful focus may be on testing for the patterns that niche
conservatism may (or may not) help create and explain. As
one example, we reviewed how NC (niche conservatism) in
climatic tolerances may limit the geographic ranges of
species, and the myriad effects that this may cause (and
patterns it may help explain). These include patterns of
species richness, historical biogeography, community struc-
ture, allopatric speciation, spread of invasive species, and
responses of species to global warming. We described how
these effects can potentially be tested using ecological niche
modelling and related approaches, especially when com-
bined with phylogenies (our Table 1).

In a thought-provoking article, Losos (2008) argues that
evidence for NC is equivocal, and that NC must be tested
rather than assumed. I strongly agree that there is abundant
evidence for niche lability and that NC should be tested
rather than assumed a priori. But without attention to
specific effects of NC, these tests risk being meaningless.
This criticism may apply to many counter-examples to NC
mentioned by Losos.

For example, Losos advocates testing NC based on the fit
of an ecological trait to a Brownian motion model across a
phylogeny (e.g. a GIS-based climatic variable; Knouft et al.
2006). But what exactly do we learn from this exercise? For
example, does it tell us if there is a sufficient or insufficient
level of NC to create patterns of speciation, species richness,
community structure, spread of invasive species, or
responses to global warming? Clearly, the answer is !no".
Then what is it actually telling us? A useful test of NC
requires a specific context.

In addition, this tree-fitting approach (by itself) may be
fundamentally inadequate to address the diverse effects of
NC described above, because it only considers where
species occur. But it is essential to also consider where
species are absent, given that their failure to occur there may
be a consequence of NC. For example, allopatric sister
species on adjacent mountain ranges may have somewhat
different climatic niches. Yet, the primary factor that caused
them to be allopatric (and thus, speciate) may be inhospi-
table climatic conditions in the intervening lowlands, where
neither can persist because of NC (Wiens & Graham 2005;
Kozak & Wiens 2006). The tree-fitting approach alone may

not reveal this pattern, because it ignores data from the
localities where the species are absent.

As a sole approach to testing NC, the tree-fitting
approach is blind to the different scales at which NC may
be important. Just because a trait shows some variation
across species within a clade does not mean that NC was not
important in splitting a particular pair of species, limiting the
spread of an invasive species, or driving large-scale patterns
of historical biogeography and diversity in the group.

An example from Losos" outstanding work on Anolis
lizards may illustrate both the problems of ignoring scale
and of considering only where a clade or species occurs.
Knouft et al. (2006) argued that climatic niches were not
conserved among species of the sagrei group on the tropical
island of Cuba. One species of the group (A. sagrei ) has
become invasive in Florida. Despite extensive spread in
Florida over > 100 years, it has failed to invade more
temperate regions of North America (Kolbe et al. 2004), a
potential signature of NC.

At a larger scale, over the entire phylogenetic history of
the genus, Anolis have generally failed to invade cool
temperate and desert regions, such as northeastern and
southwestern North America (Conant & Colllins 1998).
This pattern may also reflect NC. But this dramatic
pattern is completely invisible if one only considers
climatic data from where Anolis species occur. Thus, it
seems problematic to analyze climatic variation within a
group of exclusively tropical organisms and conclude that
their climatic niches are not conserved. As suggested by
Anolis lizards, some niche lability among species within a
clade may not rule out effects of NC on other scales,
such as limiting the spread of invasive species (short
term) or determining large-scale patterns of biogeography
and diversity (long term).

Losos" criterion for NC may underlie his argument that
NC is not a process. If NC is simply considered the match
of an ecological variable to a phylogeny, then there is no
reason to think about it as a process that helps create other
biological patterns. Losos argues that NC is not a process
because many different processes may cause it. But many
well-known processes are actually caused by a variety of
different processes when viewed at a finer scale. For
example, a variety of genetic mechanisms can lead to
speciation (e.g. polyploidy, sexual selection). NC, like
speciation, is a pattern and a process. But it can sometimes
be useful to talk about both as processes, because they can
create other patterns (e.g. NC may limit geographic ranges,
speciation creates species and phylogenies).

I strongly agree with Losos that statistical tests of NC
are needed, rather than uncritically assuming it to be
universally present in every case. But those tests must be
appropriate for the scope and scale of more specific
questions, or else they risk being irrelevant. There is no
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!one size fits all" test for NC, because the effects of NC
may be manifested in different ways and at different
scales. If we match our tests to specific questions and
appropriate scales, then existing studies already suggest
that considering NC can potentially help answer some
fundamental questions in ecology, evolution, and conser-
vation, such as why there are more species in the tropics
(e.g. Wiens et al. 2006), what drives the origin of species
(e.g. Kozak & Wiens 2006), and what determines the
spread of invasive species (Peterson 2003).
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RE JO INDER TO WI ENS ( 2 008 ) : PHY LOGENET I C
N I CHE CONSERVAT I SM , I T S OCCURRENCE AND
IMPORTANCE

Phylogenetic niche conservatism (PNC) – the tendency of
closely related species to be similar in their niches – is the
subject of considerable research in recent years. Because some
workers appear to assume that PNC inevitably will occur,
I pointed out that, in fact, in many cases clades do not exhibit
PNC for some ecological traits (Losos 2008). Consequently,
I cautioned that scientists conducting research in which the
phylogenetic distribution of ecological traits might be relevant
should directly test whether PNC occurs, rather than
assuming that it does. In addition, I mentioned a number of
the implications of lack of PNC for a wide variety of studies.

I agree with John Wiens about many of the issues he
raises. In particular, we agree that PNC may be relevant to
understanding many phenomena, such as how and why

speciation occurs and the biogeographic distribution of a
clade. In his Comment, Wiens (2008) raises a number of
objections to my paper, but I believe that they primarily
represent misunderstanding of what I was trying to say.

Wiens read my paper as a call for researchers to go out
and determine the extent of PNC for no other purpose than
to see how prevalent it is. But this was not my intent at all.
Quite the contrary, my purpose was to say that if a
researcher is conducting a study in which the existence of
PNC may be relevant to the study"s design or interpretation,
then the researcher should directly examine whether PNC
occurs, rather than just assume that it does. Perhaps I
should have said this more explicitly, but I thought the point
was implicit in the discussion in the !Implications" section
and elsewhere in the paper.

Wiens also argues that context and scale are important in
considering PNC. Reiterating Wiens & Graham (2005), he
states, !niches are presumably neither identical nor completely
different between close relatives, and the answer simply
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COMMENTARY ON LOSOS ( 2 008 ) : N I CHE
CONSERVAT I SM D É J À VU

There is much debate in the recent literature over whether
niches are generally conserved or not. I have argued that this
debate is not very fruitful, because niches are presumably
neither identical nor completely different between close
relatives, and the answer simply depends on the scale and
details of the test (Wiens & Graham 2005). Instead, a more
useful focus may be on testing for the patterns that niche
conservatism may (or may not) help create and explain. As
one example, we reviewed how NC (niche conservatism) in
climatic tolerances may limit the geographic ranges of
species, and the myriad effects that this may cause (and
patterns it may help explain). These include patterns of
species richness, historical biogeography, community struc-
ture, allopatric speciation, spread of invasive species, and
responses of species to global warming. We described how
these effects can potentially be tested using ecological niche
modelling and related approaches, especially when com-
bined with phylogenies (our Table 1).

In a thought-provoking article, Losos (2008) argues that
evidence for NC is equivocal, and that NC must be tested
rather than assumed. I strongly agree that there is abundant
evidence for niche lability and that NC should be tested
rather than assumed a priori. But without attention to
specific effects of NC, these tests risk being meaningless.
This criticism may apply to many counter-examples to NC
mentioned by Losos.

For example, Losos advocates testing NC based on the fit
of an ecological trait to a Brownian motion model across a
phylogeny (e.g. a GIS-based climatic variable; Knouft et al.
2006). But what exactly do we learn from this exercise? For
example, does it tell us if there is a sufficient or insufficient
level of NC to create patterns of speciation, species richness,
community structure, spread of invasive species, or
responses to global warming? Clearly, the answer is !no".
Then what is it actually telling us? A useful test of NC
requires a specific context.

In addition, this tree-fitting approach (by itself) may be
fundamentally inadequate to address the diverse effects of
NC described above, because it only considers where
species occur. But it is essential to also consider where
species are absent, given that their failure to occur there may
be a consequence of NC. For example, allopatric sister
species on adjacent mountain ranges may have somewhat
different climatic niches. Yet, the primary factor that caused
them to be allopatric (and thus, speciate) may be inhospi-
table climatic conditions in the intervening lowlands, where
neither can persist because of NC (Wiens & Graham 2005;
Kozak & Wiens 2006). The tree-fitting approach alone may

not reveal this pattern, because it ignores data from the
localities where the species are absent.

As a sole approach to testing NC, the tree-fitting
approach is blind to the different scales at which NC may
be important. Just because a trait shows some variation
across species within a clade does not mean that NC was not
important in splitting a particular pair of species, limiting the
spread of an invasive species, or driving large-scale patterns
of historical biogeography and diversity in the group.

An example from Losos" outstanding work on Anolis
lizards may illustrate both the problems of ignoring scale
and of considering only where a clade or species occurs.
Knouft et al. (2006) argued that climatic niches were not
conserved among species of the sagrei group on the tropical
island of Cuba. One species of the group (A. sagrei ) has
become invasive in Florida. Despite extensive spread in
Florida over > 100 years, it has failed to invade more
temperate regions of North America (Kolbe et al. 2004), a
potential signature of NC.

At a larger scale, over the entire phylogenetic history of
the genus, Anolis have generally failed to invade cool
temperate and desert regions, such as northeastern and
southwestern North America (Conant & Colllins 1998).
This pattern may also reflect NC. But this dramatic
pattern is completely invisible if one only considers
climatic data from where Anolis species occur. Thus, it
seems problematic to analyze climatic variation within a
group of exclusively tropical organisms and conclude that
their climatic niches are not conserved. As suggested by
Anolis lizards, some niche lability among species within a
clade may not rule out effects of NC on other scales,
such as limiting the spread of invasive species (short
term) or determining large-scale patterns of biogeography
and diversity (long term).

Losos" criterion for NC may underlie his argument that
NC is not a process. If NC is simply considered the match
of an ecological variable to a phylogeny, then there is no
reason to think about it as a process that helps create other
biological patterns. Losos argues that NC is not a process
because many different processes may cause it. But many
well-known processes are actually caused by a variety of
different processes when viewed at a finer scale. For
example, a variety of genetic mechanisms can lead to
speciation (e.g. polyploidy, sexual selection). NC, like
speciation, is a pattern and a process. But it can sometimes
be useful to talk about both as processes, because they can
create other patterns (e.g. NC may limit geographic ranges,
speciation creates species and phylogenies).

I strongly agree with Losos that statistical tests of NC
are needed, rather than uncritically assuming it to be
universally present in every case. But those tests must be
appropriate for the scope and scale of more specific
questions, or else they risk being irrelevant. There is no
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!one size fits all" test for NC, because the effects of NC
may be manifested in different ways and at different
scales. If we match our tests to specific questions and
appropriate scales, then existing studies already suggest
that considering NC can potentially help answer some
fundamental questions in ecology, evolution, and conser-
vation, such as why there are more species in the tropics
(e.g. Wiens et al. 2006), what drives the origin of species
(e.g. Kozak & Wiens 2006), and what determines the
spread of invasive species (Peterson 2003).
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species processes that cause traits to be conserved over time, (2) emphasizes connections
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Evolution is the ultimate cause of the diversity of life, from
the origin of species to the variety of ecological, physiolog-
ical, morphological and behavioural traits that those species

possess. Many biologists are enthralled by spectacular
examples of the rapid evolution of species and ecological
traits (e.g. Darwin!s finches, Rift-lake cichlids) and con-
cerned about evolutionary responses to human impacts (e.g.
reduced body sizes in fisheries). Yet, there may also be many
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There is much debate in the recent literature over whether
niches are generally conserved or not. I have argued that this
debate is not very fruitful, because niches are presumably
neither identical nor completely different between close
relatives, and the answer simply depends on the scale and
details of the test (Wiens & Graham 2005). Instead, a more
useful focus may be on testing for the patterns that niche
conservatism may (or may not) help create and explain. As
one example, we reviewed how NC (niche conservatism) in
climatic tolerances may limit the geographic ranges of
species, and the myriad effects that this may cause (and
patterns it may help explain). These include patterns of
species richness, historical biogeography, community struc-
ture, allopatric speciation, spread of invasive species, and
responses of species to global warming. We described how
these effects can potentially be tested using ecological niche
modelling and related approaches, especially when com-
bined with phylogenies (our Table 1).

In a thought-provoking article, Losos (2008) argues that
evidence for NC is equivocal, and that NC must be tested
rather than assumed. I strongly agree that there is abundant
evidence for niche lability and that NC should be tested
rather than assumed a priori. But without attention to
specific effects of NC, these tests risk being meaningless.
This criticism may apply to many counter-examples to NC
mentioned by Losos.

For example, Losos advocates testing NC based on the fit
of an ecological trait to a Brownian motion model across a
phylogeny (e.g. a GIS-based climatic variable; Knouft et al.
2006). But what exactly do we learn from this exercise? For
example, does it tell us if there is a sufficient or insufficient
level of NC to create patterns of speciation, species richness,
community structure, spread of invasive species, or
responses to global warming? Clearly, the answer is !no".
Then what is it actually telling us? A useful test of NC
requires a specific context.

In addition, this tree-fitting approach (by itself) may be
fundamentally inadequate to address the diverse effects of
NC described above, because it only considers where
species occur. But it is essential to also consider where
species are absent, given that their failure to occur there may
be a consequence of NC. For example, allopatric sister
species on adjacent mountain ranges may have somewhat
different climatic niches. Yet, the primary factor that caused
them to be allopatric (and thus, speciate) may be inhospi-
table climatic conditions in the intervening lowlands, where
neither can persist because of NC (Wiens & Graham 2005;
Kozak & Wiens 2006). The tree-fitting approach alone may

not reveal this pattern, because it ignores data from the
localities where the species are absent.

As a sole approach to testing NC, the tree-fitting
approach is blind to the different scales at which NC may
be important. Just because a trait shows some variation
across species within a clade does not mean that NC was not
important in splitting a particular pair of species, limiting the
spread of an invasive species, or driving large-scale patterns
of historical biogeography and diversity in the group.

An example from Losos" outstanding work on Anolis
lizards may illustrate both the problems of ignoring scale
and of considering only where a clade or species occurs.
Knouft et al. (2006) argued that climatic niches were not
conserved among species of the sagrei group on the tropical
island of Cuba. One species of the group (A. sagrei ) has
become invasive in Florida. Despite extensive spread in
Florida over > 100 years, it has failed to invade more
temperate regions of North America (Kolbe et al. 2004), a
potential signature of NC.

At a larger scale, over the entire phylogenetic history of
the genus, Anolis have generally failed to invade cool
temperate and desert regions, such as northeastern and
southwestern North America (Conant & Colllins 1998).
This pattern may also reflect NC. But this dramatic
pattern is completely invisible if one only considers
climatic data from where Anolis species occur. Thus, it
seems problematic to analyze climatic variation within a
group of exclusively tropical organisms and conclude that
their climatic niches are not conserved. As suggested by
Anolis lizards, some niche lability among species within a
clade may not rule out effects of NC on other scales,
such as limiting the spread of invasive species (short
term) or determining large-scale patterns of biogeography
and diversity (long term).

Losos" criterion for NC may underlie his argument that
NC is not a process. If NC is simply considered the match
of an ecological variable to a phylogeny, then there is no
reason to think about it as a process that helps create other
biological patterns. Losos argues that NC is not a process
because many different processes may cause it. But many
well-known processes are actually caused by a variety of
different processes when viewed at a finer scale. For
example, a variety of genetic mechanisms can lead to
speciation (e.g. polyploidy, sexual selection). NC, like
speciation, is a pattern and a process. But it can sometimes
be useful to talk about both as processes, because they can
create other patterns (e.g. NC may limit geographic ranges,
speciation creates species and phylogenies).

I strongly agree with Losos that statistical tests of NC
are needed, rather than uncritically assuming it to be
universally present in every case. But those tests must be
appropriate for the scope and scale of more specific
questions, or else they risk being irrelevant. There is no
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!one size fits all" test for NC, because the effects of NC
may be manifested in different ways and at different
scales. If we match our tests to specific questions and
appropriate scales, then existing studies already suggest
that considering NC can potentially help answer some
fundamental questions in ecology, evolution, and conser-
vation, such as why there are more species in the tropics
(e.g. Wiens et al. 2006), what drives the origin of species
(e.g. Kozak & Wiens 2006), and what determines the
spread of invasive species (Peterson 2003).
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Introduction of the Spotted Knapweed in Northern America, 
Broennimann et al. 2007 

D I SCUSS ION

Our results clearly suggest a climatic niche shift of Spotted
Knapweed during or subsequent to invasion of this
species. The study was based on a comprehensive
occurrence data from all regions where the species is
present in Europe and western North America, fully
covering the relevant climatic gradients. Although distri-
bution data of exotic species are increasingly available
within their introduced ranges, obtaining similar data from
the native range often remains difficult (Peterson et al.

2003). We put particular effort in acquiring data from the
native species range by performing our own field sampling.
We are not aware of comparably robust data for other
invasive species across two ranges.

These results have important implications for studies of
biological invasions, as they provide the first empirical field
evidence of such phenomenon. The distribution of invading
and native population along climatic gradients (Fig. 1)
shows that none of the native populations grows in a similar
climate as the vast majority of the invading populations in
western North America. However, some of the invading

Figure 1 Bioclimatic space with illustration of niche shift. The position of occurrences, from the native and invaded ranges along the
principal climatic gradients is indicated with green dots and red crosses respectively. The red star shows the climatic position of the first
population introduced in North America (Victoria, BC). The arrow linking the centroids of the 1.5 inertia ellipses for the two ranges illustrates
the niche shift. The enclosed correlation circle indicates the importance of each bioclimatic variable on the two significant axes of the
principal component analysis (PCA), which jointly explain 73.22% of the variance in the data. A between-class analysis, yielding a between-
class inertia ratio, was further conducted and tested with 99 Monte-Carlo randomizations. The convex hulls indicate the prevalence (25, 50, 75
and 100% of sites included) of the global climate conditions in the two ranges. Climatic predictors are: tmp ¼ annual mean temperature,
tmax ¼ maximum temperature of the warmest month, tmin ¼ minimum temperature of the coldest month, prec ¼ annual sum of
precipitation, std_prec ¼ annual variation of precipitation, gdd ¼ annual growing-degree days above 5 !C, aet/pet ¼ ratio of actual to
potential evapotranspiration, pet ¼ annual potential evapotranspiration.
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CAN	
  CONSTRAINTS	
  ON	
  NICHE	
  EVOLUTION	
  ARISE	
  SIMPLY	
  THROUGH	
  
BOUNDED	
  	
  GEOGRAPHIC	
  SPACE?	
  

à Niches	
  are	
  a`racted	
  towards	
  the	
  middle	
  of	
  the	
  landscape	
  
because	
  of	
  the	
  boundaries	
  



COMPARISON	
  TO	
  MACROEVOLUTIONARY	
  
MODELS	
  

 
 
 
 
 
 
 
 

à	
  OUp	
  =	
  {constraints	
  +	
  punctualism}	
  always	
  the	
  best	
  

à	
  Brownian	
  Mo0on	
  oTen	
  gets	
  the	
  worse	
  fit	
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WHAT	
  WOULD	
  BE	
  THE	
  NEUTRAL	
  EXPECTATION	
  FROM	
  A	
  
BIOGEOGRAPHIC	
  POINT	
  OF	
  VIEW?	
  

à If	
  niches	
  evolved	
  primarily	
  through	
  biogeographic	
  processes	
  
and	
  no	
  physiological	
  constraint	
  were	
  present,	
  we	
  would	
  expect	
  
to	
  see	
  both	
  punctualism	
  and	
  constraints	
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Models	
  with	
  constraints	
  may	
  arise	
  from	
  various	
  processes:	
  

-­‐  Stabilizing	
  selec0on,	
  bounds	
  in	
  geographic	
  space…	
  

	
   	
  à	
  difficult	
  to	
  conclude	
  on	
  PhylogenePc	
  Niche	
  ConservaPsm	
  by	
  contras0ng	
  simple	
  
models	
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More	
  elaborate	
  models,	
  where	
  niches	
  depend	
  on	
  traits/distribu0on	
  should	
  be	
  used:	
  

	
  

	
  

	
  

	
  

	
  

	
  
	
  

	
  à	
  tools	
  are	
  already	
  developped	
  (e.g.	
  Beaulieu	
  et	
  al.	
  2012),	
  let’s	
  use	
  them!	
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