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HOW DO CELLS MOVE : bacteria
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E. Coli and Micrococcus are equipped with external devices; they emit

chemicals and can react to these chemicals



HOW DO CELLS MOVE : bacteria

This creates a collective motion and results in patterns

By D. Jukowska, S. Seror, B. Holland (Institut de Génétique et Microbiologie)

How to characterize these colonies?



HOW DO CELLS MOVE : amoebia

Dictyostelum Discoideum uses an intenal pseudopod



HOW DO CELLS MOVE : amoebia

Dictyostelum Dyscoideum can create a fruiting body



HOW DO CELLS MOVE : fibroblast

Extracellular Matrix
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In vivo, fibroblast can move within the extracellular matrix



Activation of Vasoular Endothelial Cells




HOW DO CELLS MOVE : tumor growth
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Fig L. Anillugtration of the strocture of 2 multicellalar tumour spserosd, with an cuber fim
ol prolifersting cells and an inner necrotic cone; these are separabed by a layer of goiescent
celle The spiverond desmater 12 1.4 i [Reprosdisoed Iroin Sutherdand e al, (Cancer Res.

Tumor spheroid vascularized tumor through angiogenesis



HOW DO CELLS MOVE : endothelial cells

Animation from M. Mirshahi

(INSERM E 355 faculté de Médecine Paris VI)



CHEMOTAXIS : Keller-Segel model

The mathematical modelling of cell movement goes back to

n(t,x)
c(t,x)

density of cells at time t and position =,
concentration of chemoattractant,

In a collective motion, the chemoattractant is emited by the cells
that react according to biased random walk.

%n(t,w) — VpactAn(t, z) + div(nxyVe) =0, € R4,
%C(ta 33) T VchemAC(ta :C) + TC — n(ta $>,
The parameter y is the sensitivity of cells to the chemoattractant.



CHEMOTAXIS : Keller-Segel model

2n(t,x) — An(t,x) +div(nxVe) =0, z € RY,

—Ac(t,z) = n(t,x),

This model, although very simple, exhibits a deep mathematical
structure and mostly only dimension 2 is understood, especially
"chemotactic collapse’.

This is the reason why it has attracted a number of authors.



CHEMOTAXIS : Keller-Segel model

2n(t,x) — An(t,z) + div(nxVe) =0, z€ R,
—Ac(t,z) = n(t,x).

-Childress, Percus (84); Jager, Luckhaus (92),

-Rascle, Zitti (95); Nagai (95) ; Biler, Nadzieja(93),
-Herrero, Medina, Velazquez (96-04) ;

-Brenner, Constantin, Kadanoff, Schenkel, Venkatarami (98) ;
-Horstmann (00) ; Corrias, Dolbeault, Perthame, Zaag (04) ;



CHEMOTAXIS : Keller-Segel model

Theorem (dimensions d > 2) - (method of Sobolev inequalities)
(i) for ||n0||Ld/2(Rd) small, then there are global weak solutions,
(ii) these small solutions gain LP regularity,

(iii) Hn(t)HLOO(Rd) — 0 with the rate of the heat equation,

(iii) for ([]z|?n0)(d=2) < C||no||dL1(Rd) with C small, there is blow-up
in a finite time T*.



CHEMOTAXIS : Keller-Segel model

In dimension 2, for model :

On(t,z) — An(t,z) + div(nyVe) =0, =€ R?,
—Ac(t,z) = n(t,x),

Theorem (dimension d=2) (Method of energy)

(i) for ||n0 ||L1(R2) < 8™ there are smooth solutions,

(i) for ||n” .||L1_(R.2) >. x , there is creation of a singular measure
(blow-up) in finite time.

(iii) For radially symmetric solutions, blow-up means

n(t) ~ 8—7T(5(:13 = 0) + Rem.
X



CHEMOTAXIS : dimension 2

Interest : The Keller-Segel model seems successful to describe

aggregation, some 'ring patterns’, threshold are observed
experimentally.

Mathematically a variety of methods are used ; Sobolev embeddings,
energy methods, refined Hardy-Littlewood-Sobolev estimates (from

1994), convolution estimates, DeGiorgi method, asymptotic
analysis...etc
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Dentritic bacterial growth

Is chemotaxis involved in the bacterial movment of Bacillus Subtilis

and in the development of such colonies? Another theory is propsed
by Mimura



Dentritic bacterial growth

The simplest model is due to

/

0 _ n
5n(t,z) — An = n(S — (1—|—n)(1—|—5))’

{ 5(t,x) — AS = —nS,

0 _ n
ot (L2) =1 ayaTs)

More elaborated models are due to BenJdacob, Kitsunezaki,
Shikezada... and are based on the 'nutrient gradient’ principle.

ANR Project with Institut de Génétique et Microbiologie
(Paris-Sud), Ecole Polytechnique (M. Plapp)
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I Golding et al | Physica A 260 (1998) 510-554

Fig. 28. 2D growth pattern (b + ) of the Kitsunezaki model with repulsive chemotactic signaling included.
Parameters are: yor =1, D=1, I'r =025, 2, =0, A, =0.001. Other parameters as in Fig. 19,

Fig. 29. 2D growth pattern (b -+ ) of the Mimura et al. model with food chemotaxis included. y,, = 0.06.
Other paramete i 2
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Simulation of Mimura’s model by A. Marrocco (inria, bang)



Networks and hyperbolic models




HBMEC SUR
MATRIGEL
T=0 ,2H,4H,6H,20H




Networks and hyperbolic models

A group of Torino proposed a
hydrodynamics model

( %n(t,az) + div(nu) =0, x¢€ 327
\ %U(t, :U) + U(t, $) . V’u, —|— vna =X VC — uu,
%C(t7 x) — Ac(t,z) + te(t,z) = n(t, ).




Networks and hyperbolic models

A group of Torino proposed a
hydrodynamics model

( %n(t,az) + div(nu) =0, x¢€ 327
\ %U(t, :U) + U(t, $) . V’u, —|— vna =X VC — uu,
%C(ta x) — Ac(t,z) + te(t,z) = n(t, ).

model can be viewed as a special case where the
acceleration term is neglected

0
au(t,x) + u(t,z) - Vu = 0.



Networks and

hyperbolic models
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Fig. 4. Formabion ol networked 1 dewsily amd 2ooun on the fefi-boiom corner of (21 the
densiry and {3 velocity feold ofuined with 50 cells fmm?*.

Fig. 5. Formabion ol networko] 1) dernsiny and foowt on the Eefi-bomom corner of (2 e
ewesiry and {3 velocity feld obtmined with 100 cells fmm®.




KINETIC MODELS

E. Coli is known (since the 80's) to move by run and tumble
depending on the coordination of motors that control the flagella

See



KINETIC MODELS

Denote by f(t,x,£) the density of cells moving with the velocity &.

0

run tumble

KU1 = [ K(ei6,)f€hde - [ K(eig,&)de’ 1,

“Ac(t,z) = n(t,z) = / F(t,x, £)dE,

K(c;€,€) =k-(c(z —e€)) + ky(c(z +£)).

Nonlocal, quadratic term on the right hand side for k+(-, &, &)
sublinear.
x + £ represents a (fundamental) memory term.



KINETIC MODELS

Theorem (Chalub, Markowich, P., Schmeiser)
Assume that 0 < k1(c;&,¢") < C(1 4+ ¢) then there is a GLOBAL
solution to the kinetic model and

1F@llzoe < OISOl + 170 poc]

-) Open question : Is it possible to prove a bound in L% when we
replace the specific form of K by

0 < K(c;&¢) <z ?

loc

k(Vc(a: _ 55’)) or k(Vc(w + ag))



KINETIC MODELS : diffusion limit
One can perform a parabolic rescaling based on the memory scale

Klf] = [ K(c; &€ f'dg" — [ K(c; &', €)de f,
—AC(t,,CU) — n(t7aj) = ff(t7x7£)d£7
K(c €, €N = k_(c(aj — 55’)) + k_|_<c(ac + 55)).

Theorem (Chalub, Markowich, P., Schmeiser) With the same
assumptions, as € — 0, then locally in time,

fE(tawaf) — n(t7x)7 C€(t7x) — C(tax)a

{ O n(t,2) — div[DVn(t, x)] 4 div(nxVe) = 0,
—Ac(t,z) = n(t,x).



and the transport coefficients are given by
1

P = R0 k(@)

kK (c) + k’_l_(c)
k—(c) + ky(c)

x(n,c) = xo

The drift (sensibility) term x(n,c) comes from the memory term.

Interpretation in terms of random walk : memory is fundamental.



Conclusion

Several open questions are
-) Is it possible to prove blow-up for

”"O”Ld/? large (without moment condition),

-) Despite the knowledge of possible blow-up modalities, proofs are
not rigorous,

-) More elaborate systems ,

-) Mathematical theory for dentritic growth,

-) Mathematical models for dentritic growth,
-) Modeling : genome, networks, coefficients.



