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classical RNASeq (bulk RNASeq)
For each gene or transcript :

We have a number of reads
We can estimate the amount of RNA transcripts

Compared to other RNA measurements we handle counts (Y positive
integers)

The natural count distribution is the
Poisson distribution.

Yig ∼ P(λig)

for the gene g in condition i.
λig RNA transcription rate
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classical RNASeq (bulk RNASeq)
For each gene or transcript :

We have a number of reads
We can estimate the amount of RNA transcripts

Compared to other RNA measurements we handle counts (Y positive
integers)

The NegativeBinomial distribution
allows for more or less variability.

Yig ∼ NB(µig, αig)

for the gene g in condition i.
µig RNA transcription rate
αig technical or biological
variability
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single-cell RNA sequencing (scRNASeq)

Examples where biological variability stay hidden in bulk RNASeq
experiments

’
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Drawbacks

Compared to bulk RNASeq, we are not working with measurement on a
population of cells:

low starting amount of RNA (zeros)
need to amplify (more errors )
transcription status of each gene in each cell (more zeros)

scRNASeq = bulk RNASeq + zeros × 2 + noise
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single-cell RNA sequencing (scRNASeq)

The zero-inflated NegativeBinomial distribution accounts for the excess of
zeros.

Yig ∼ πigδ0 + (1− πig)NB(µig, αig)

for the gene g in condition i.
µig RNA transcription rate
αig technical or biological
variability
π the proportion of additional
zeros
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Bulk or scRNASeq reads are the same thing
You can use the same quality control and mapping tools

Unique Molecular Identifiers UMI
control of cDNA amplification
we have access to the RNA transcripts counts (dropEst1)
risk of UMI collisions2

alternative splicing?

Classical RNASeq
alternative splicing (Kallisto3 with the pseudo mode)
possible cDNA amplification bias
we work with read counts

No tools to infer the transcript counts (yet)

1Smith2017
2Petukhov2017
3Bray2016
laurent.modolo@ens-lyon.fr single-cell scRNASeq 9 / 22



Bulk or scRNASeq reads are the same thing
You can use the same quality control and mapping tools

Unique Molecular Identifiers UMI
control of cDNA amplification
we have access to the RNA transcripts counts (dropEst1)
risk of UMI collisions2

alternative splicing?

Classical RNASeq
alternative splicing (Kallisto3 with the pseudo mode)
possible cDNA amplification bias
we work with read counts

No tools to infer the transcript counts (yet)

1Smith2017
2Petukhov2017
3Bray2016
laurent.modolo@ens-lyon.fr single-cell scRNASeq 9 / 22



Bulk or scRNASeq reads are the same thing
You can use the same quality control and mapping tools

Unique Molecular Identifiers UMI
control of cDNA amplification
we have access to the RNA transcripts counts (dropEst1)
risk of UMI collisions2

alternative splicing?

Classical RNASeq
alternative splicing (Kallisto3 with the pseudo mode)
possible cDNA amplification bias
we work with read counts

No tools to infer the transcript counts (yet)
1Smith2017
2Petukhov2017
3Bray2016
laurent.modolo@ens-lyon.fr single-cell scRNASeq 9 / 22



Table of Contents

1 single-cell RNA sequencing

2 Counting molecules

3 Cell quality control

4 Normalization

5 Dimension reduction

6 Differential expression analysis

7 Clustering

laurent.modolo@ens-lyon.fr single-cell scRNASeq 10 / 22



Low quality cells must be removed

Identifying low quality
cells:

detection of
outliers
sequencing of
blanks
ERCC counts

Gaussian mixture
model (mclust)

Support vector
machines (e1071)

1Petukhov2017
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Normalization
bulk RNASeq

scaling between
replicates
as many replicate as we
want
(batch effects)

scRNASeq
scaling between cells
cells can be measured only once
(for now)
10-60% mRNA capture
efficiency
large number of batches

Need to normalize for:
differences between cells
differences between batches
differences between genes
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Normalization
single-cell scaling factor with SCnorm1

batch effect DASC2

1Batcher2017
1Yi2017
3Risso2017
4Li2018
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Normalization
single-cell scaling factor with SCnorm1

batch effect DASC2

both ZINB-WaVe3

correct dropout scImpute4
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Scaling

scaled counts
Yg

exp(α̂g)
× (1− π̂g)

zeros stay zeros
the more zeros the less the gene will contribute
we use the empirical dispersion

spread counts
log-transform: log(Y + 1)

Anscomb transform:
√

Y + 3/8
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Dimension reduction
We have a large number of cells and a large number of genes

PCA
Classical PCA on scaled and spread counts

ziNB-WaVe

t-SNE on the above

1Risso2017
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Dimension reduction
We have a large number of cells and a large number of genes
PCA
Classical PCA on scaled and spread counts

ziNB-WaVe
Using W

t-SNE on the above
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Differential expression analysis

with classical RNASeq tools zinbwaveZinger1

with zero-inflated NegativeBinomial GLM pscl, glmmADMB
with dropout modelization M3Drop2

1Risso2018
2Tallulah2018
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Clustering
Euclidian distance don’t work with more than 80% of zeros

multiple kernel method SIMLR1

dropout imputation scImpute2

1Wang2017
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Thank you

Yig ∼ πigδ0 + (1− πig)NB(µig, αig)

for the gene g in condition i.

More than 200 tools at:
http://www.scrna-tools.org/

Tutorials and tools at:
https://github.com/seandavi/awesome-single-cell
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