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classical RNASeq (bulk RNASeq)

For each gene or transcript :
m We have a number of reads
m We can estimate the amount of RNA transcripts

Compared to other RNA measurements we handle counts (Y positive
integers)

The natural count distribution is the
Poisson distribution.

Yig ~ P()‘ig)
for the gene ¢ in condition 7.

m )\;; RNA transcription rate

L Gierlinski2015
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classical RNASeq (bulk RNASeq)

For each gene or transcript :

m We have a number of reads

m We can estimate the amount of RNA transcripts
Compared to other RNA measurements we handle counts (Y positive
integers)

The NegativeBinomial distribution
allows for more or less variability. o |
col
©
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single-cell RNA sequencing (scRNASeq)

Examples where biological variability stay hidden in bulk RNASeq
experiments
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Drawbacks

Compared to bulk RNASeq, we are not working with measurement on a
population of cells:

m low starting amount of RNA (zeros)
m need to amplify (more errors )

m transcription status of each gene in each cell (more zeros)
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Drawbacks

Compared to bulk RNASeq, we are not working with measurement on a
population of cells:

m low starting amount of RNA (zeros)
m need to amplify (more errors )

m transcription status of each gene in each cell (more zeros)

scRNASeq = bulk RNASeq + zeros x 2+ noise
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single-cell RNA sequencing (scRNASeq)

The zero-inflated NegativeBinomial distribution accounts for the excess of
zeros.

v
Yig ~ 7Tig50 + (1 — 7rz'g) NB(Mig, Ozig) :
for the gene ¢ in condition 3. _;E
m /1;; RNA transcription rate :'f_%g
m «, technical or biological -]
variability °

m 7 the proportion of additional =2 | I
0 2 6 8

Zeros
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Bulk or scRNASeq reads are the same thing

You can use the same quality control and mapping tools
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2petukhov2017
3Bray2016
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Bulk or scRNASeq reads are the same thing
You can use the same quality control and mapping tools
Unique Molecular Identifiers UMI

m control of cDNA amplification

m we have access to the RNA transcripts counts (dropEst!)
m risk of UMI collisions?

m alternative splicing?

Classical RNASeq

m alternative splicing (Kallisto® with the pseudo mode)
m possible cDNA amplification bias

m we work with read counts

No tools to infer the transcript counts (yet)

1Smith2017
2petukhov2017
*Bray2016
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Low quality cells must be removed

Pairs plot of scPipe QC metrics
total_count_per_cell number_of_genes non_ERCC_percent  non_mt_parcent outliers.
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Identifying low quality
cells:

m detection of
outliers

m sequencing of
blanks

m ERCC counts

Gaussian mixture
model (mclust)

Support vector
machines (e1071)
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Normalization

bulk RNASeq

m scaling between
replicates

m as many replicate as we
want

m (batch effects)

scRNASeq

m scaling between cells

m cells can be measured only once

(for now)

m 10-60% mRNA capture
efficiency

m large number of batches

! Andrews2018
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Normalization

bulk RNASeq

m scaling between
replicates

m as many replicate as we
want

m (batch effects)

scRNASeq

m scaling

m cells can be measured only once

between cells

(for now)

m 10-60% mRNA capture
efficiency

m large number of batches
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Normalization

m single-cell scaling factor with SCnorm!

m batch effect DASC?

!Batcher2017
1Yi2017
3Riss02017
4Li2018
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Normalization
m single-cell scaling factor with SCnorm

m batch effect DASC?
m both ZINB-WavVe?

1

J genes

Known sample-level covariates Known gene-level covariates Unknown sample-level covariates
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loglt 1 Observed Unknown Unknown Observed Unobserved Unknown
random parameter parameter random random parameter
variable variable variable

n samples
X intercept acts as a gene-specific scaling factor  V intercept acts as a sample-specific scaling factor
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Normalization

m single-cell scaling factor with SCnorm!

m batch effect DASC?
m both ZINB-Wave?
m correct dropout scImpute?
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Scaling

scaled counts
Yy

exp(a‘;) X (1 - 7/1-;)

B Zzeros stay zeros
m the more zeros the less the gene will contribute

m we use the empirical dispersion

spread counts
m log-transform: log(Y + 1)
m Anscomb transform: /Y + 3/8
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Dimension reduction
We have a large number of cells and a large number of genes
PCA

Classical PCA on scaled and spread counts

! Riss02017
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Dimension reduction

We have a large number of cells and a large number of genes
PCA

Classical PCA on scaled and spread counts
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Dimension reduction
We have a large number of cells and a large number of genes
PCA

Classical PCA on scaled and spread counts

ziNB-WaVe
Using W

t-SNE on the above

Dim2
o
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Differential expression analysis

J genes

log n

Known sample-level covariates Known gene -level covarlates

n samples

+ £
J genes
loglt n Observed Unknown Unknown Observed
random parameter parameter random
variable variable
n samples
X intercept acts as a gene-specific scaling factor V intercept acts as a sample-specific scaling factor

m with classical RNASeq tools zinbwaveZinger!
m with zero-inflated NegativeBinomial GLM pscl, glmmADMB
m with dropout modelization M3Drop?

1Riss02018
2Tallulah2018
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Clustering

Euclidian distance don't work with more than 80% of zeros
m multiple kernel method SIMLR!
m dropout imputation scImpute?

Cell-to-cell

Gene expression matrix similarity matrix

(Rows, cells; columns, genes)

'Wang2017
’Li2018
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Thank you
Yig ~ 7Tz'g(50 + (1 - 7rz'g) NB(Mig: aig)
for the gene g in condition 1.

More than 200 tools at:
http://www.scrna-tools.org/

Tutorials and tools at:
https://github.com/seandavi/awesome-single-cell
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