Analysing single cell RNAseq

Laurent Modolo

March 16 2018

- 1 single-cell RNA sequencing
- 2 Counting molecules
- 3 Cell quality control
- 4 Normalization
- 5 Dimension reduction
- 6 Differential expression analysis
- 7 Clustering

1 single-cell RNA sequencing

- 2 Counting molecules
- 3 Cell quality control
- 4 Normalization
- 5 Dimension reduction
- 6 Differential expression analysis
- 7 Clustering

classical RNASeq (bulk RNASeq)

For each gene or transcript :

- We have a number of reads
- We can estimate the amount of RNA transcripts

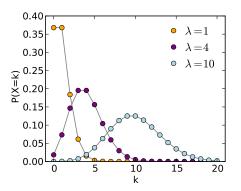
Compared to other RNA measurements we handle counts (\boldsymbol{Y} positive integers)

The natural count distribution is the Poisson distribution.

 $Y_{ig} \sim \mathcal{P}(\lambda_{ig})$

for the gene g in condition i.

• λ_{ig} RNA transcription rate



¹Gierlinski2015

classical RNASeq (bulk RNASeq)

For each gene or transcript :

- We have a number of reads
- We can estimate the amount of RNA transcripts

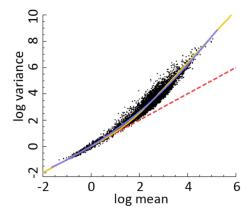
Compared to other RNA measurements we handle counts (\boldsymbol{Y} positive integers)

The natural count distribution is the Poisson distribution.

$$Y_{ig} \sim \mathcal{P}(\lambda_{ig})$$

for the gene g in condition i.

• λ_{ig} RNA transcription rate



¹Gierlinski2015

classical RNASeq (bulk RNASeq)

For each gene or transcript :

- We have a number of reads
- We can estimate the amount of RNA transcripts

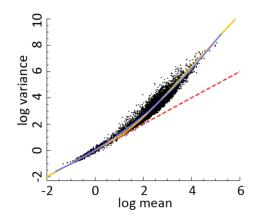
Compared to other RNA measurements we handle counts (\boldsymbol{Y} positive integers)

The NegativeBinomial distribution allows for more or less variability.

 $Y_{ig} \sim NB(\mu_{ig}, \alpha_{ig})$

for the gene g in condition i.

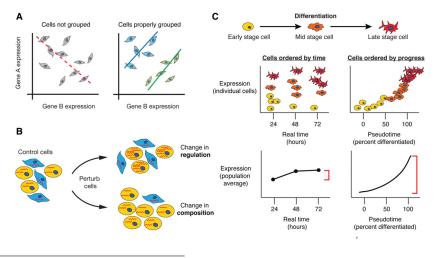
- μ_{ig} RNA transcription rate
- \$\alpha_{ig}\$ technical or biological variability



¹Gierlinski2015

single-cell RNA sequencing (scRNASeq)

Examples where biological variability stay hidden in bulk RNASeq experiments



¹Trapnell2015

Drawbacks

Compared to bulk RNASeq, we are not working with measurement on a population of cells:

- Iow starting amount of RNA (zeros)
- need to amplify (more errors)
- transcription status of each gene in each cell (more zeros)

Drawbacks

Compared to bulk RNASeq, we are not working with measurement on a population of cells:

- Iow starting amount of RNA (zeros)
- need to amplify (more errors)
- transcription status of each gene in each cell (more zeros)

$scRNASeq = bulk RNASeq + zeros \times 2 + noise$

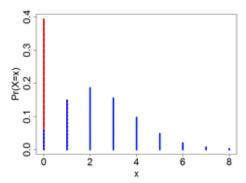
single-cell RNA sequencing (scRNASeq)

The zero-inflated NegativeBinomial distribution accounts for the excess of zeros.

$$Y_{ig} \sim \pi_{ig} \delta_0 + (1 - \pi_{ig}) NB(\mu_{ig}, \alpha_{ig})$$

for the gene g in condition i.

- μ_{ig} RNA transcription rate
- \$\alpha_{ig}\$ technical or biological variability
- π the proportion of additional zeros



single-cell RNA sequencing

- 2 Counting molecules
- 3 Cell quality control
- 4 Normalization
- 5 Dimension reduction
- 6 Differential expression analysis
- 7 Clustering

Bulk or scRNASeq reads are the same thing

You can use the same quality control and mapping tools

¹Smith2017 ²Petukhov2017 ³Bray2016

Bulk or scRNASeq reads are the same thing

You can use the same quality control and mapping tools

Unique Molecular Identifiers UMI

- control of cDNA amplification
- we have access to the RNA transcripts counts (dropEst¹)
- risk of UMI collisions²
- alternative splicing?

Bulk or scRNASeq reads are the same thing

You can use the same quality control and mapping tools

Unique Molecular Identifiers UMI

- control of cDNA amplification
- we have access to the RNA transcripts counts (dropEst¹)
- risk of UMI collisions²
- alternative splicing?

Classical RNASeq

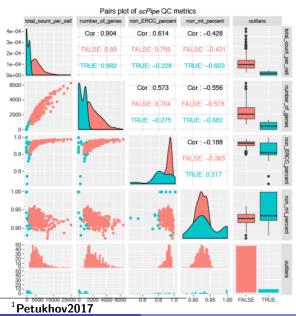
- alternative splicing (Kallisto³ with the pseudo mode)
- possible cDNA amplification bias
- we work with read counts

No tools to infer the transcript counts (yet)

¹Smith2017 ²Petukhov2017 ³Brav2016

- single-cell RNA sequencing
- 2 Counting molecules
- 3 Cell quality control
- 4 Normalization
- 5 Dimension reduction
- 6 Differential expression analysis
- 7 Clustering

Low quality cells must be removed



Identifying low quality cells:

- detection of outliers
- sequencing of blanks
- ERCC counts

Gaussian mixture model (mclust)

Support vector machines (e1071)

- single-cell RNA sequencing
- 2 Counting molecules
- 3 Cell quality control

4 Normalization

- 5 Dimension reduction
- 6 Differential expression analysis

7 Clustering

bulk RNASeq

- scaling between replicates
- as many replicate as we want
- (batch effects)

scRNASeq

- scaling between cells
- cells can be measured only once (for now)
- 10-60% mRNA capture efficiency
- large number of batches

¹Andrews2018

bulk RNASeq

- scaling between replicates
- as many replicate as we want
- (batch effects)

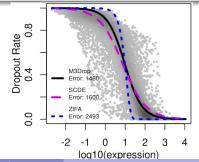
Need to normalize for:

- differences between cells
- differences between batches
- differences between genes

¹Andrews2018

scRNASeq

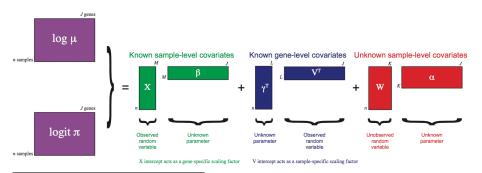
- scaling between cells
- cells can be measured only once (for now)
- 10-60% mRNA capture efficiency
- large number of batches



- single-cell scaling factor with SCnorm¹
- \blacksquare batch effect \mathtt{DASC}^2

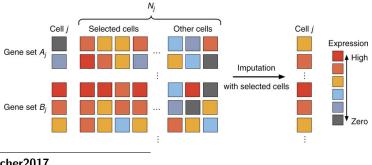
¹Batcher2017 ¹Yi2017 ³Risso2017 ⁴Li2018

- single-cell scaling factor with SCnorm¹
- batch effect DASC²
- both ZINB-WaVe³



¹Batcher2017 ¹Yi2017 ³Risso2017 ⁴Li2018

- single-cell scaling factor with SCnorm¹
- batch effect DASC²
- both ZINB-WaVe³
- correct dropout scImpute⁴



¹Batcher2017 ¹Yi2017 ³Risso2017 ⁴Li2018

Scaling

scaled counts

$$\frac{Y_g}{\exp(\widehat{\alpha_g})} \times (1 - \widehat{\pi_g})$$

- zeros stay zeros
- the more zeros the less the gene will contribute
- we use the empirical dispersion

spread counts

- log-transform: $\log(Y+1)$
- Anscomb transform: $\sqrt{Y+3/8}$

- single-cell RNA sequencing
- 2 Counting molecules
- 3 Cell quality control
- 4 Normalization
- 5 Dimension reduction
- 6 Differential expression analysis
- 7 Clustering

Dimension reduction

We have a large number of cells and a large number of genes

PCA

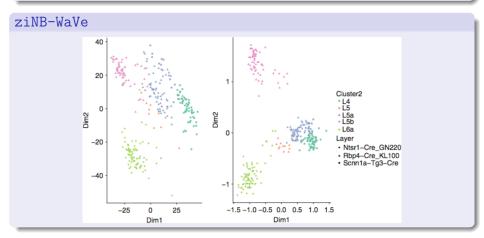
Classical PCA on scaled and spread counts

Dimension reduction

We have a large number of cells and a large number of genes

PCA

Classical PCA on scaled and spread counts



Dimension reduction

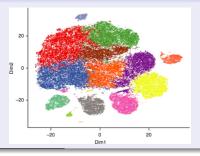
We have a large number of cells and a large number of genes

PCA

Classical PCA on scaled and spread counts

ziNB-WaVe Using W

t-SNE on the above

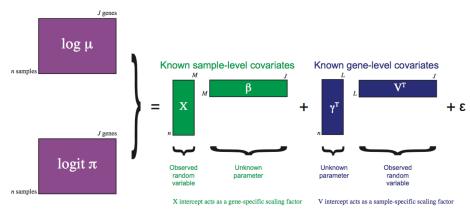


¹Risso2017

- single-cell RNA sequencing
- 2 Counting molecules
- 3 Cell quality control
- 4 Normalization
- 5 Dimension reduction
- 6 Differential expression analysis

7 Clustering

Differential expression analysis



- with classical RNASeq tools zinbwaveZinger¹
- with zero-inflated NegativeBinomial GLM pscl, glmmADMB
- with dropout modelization M3Drop²

¹Risso2018 ²Tallulah2018

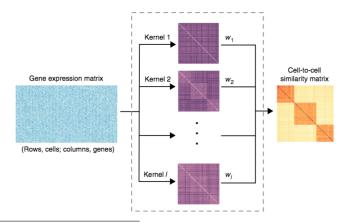
- single-cell RNA sequencing
- 2 Counting molecules
- 3 Cell quality control
- 4 Normalization
- 5 Dimension reduction
- 6 Differential expression analysis

7 Clustering

Clustering

Euclidian distance don't work with more than 80% of zeros

- multiple kernel method SIMLR¹
- dropout imputation scImpute²



¹Wang2017 ²Li2018

Thank you

$$Y_{ig} \sim \pi_{ig} \delta_0 + (1 - \pi_{ig}) NB(\mu_{ig}, \alpha_{ig})$$

for the gene g in condition i.

More than 200 tools at: http://www.scrna-tools.org/

Tutorials and tools at: https://github.com/seandavi/awesome-single-cell